BIKE SHELTER FOR CLARENDON HILLS

Overview:
The design of this bike shelter focuses on enhancing the proposed walkway, going from the parking space to the train station sidewalk. This bike shelter creates a unique threshold between these two destinations that guide passerbys with a hanging pattern of recycled railroad ties. On either side of this walkway, there are a total of 30 bike parking spots; 20 of which are public, and 10 secure storage spots. To the east, a presentation space is available for various meetings and discussions for public use.

Sustainable Strategies:
Recycled Material & Ease of Construction
- This entire bike shelter consists of recycled railroad ties and cables that are used to hold the ties together. The only other items needed for this project is the hardware to hold certain ties together.

Mixed Program
- Meshing the bike shelter and walkway create a high volume intersection to create an active, unique space.
- The presentation space can be used for educational purposes, community group meetings, and the general public.
nominal 2x4 studs - spaced 2” apart with air gap between

cast in place concrete with fly ash

concept diagram

floor plan

site plan

“it is worth asking why such an apparently simple device as the bicycle should have had such a major effect on the acceleration of technology. the answer surely lies in the sheer humanity of the machine. its purpose is to make it easier for an individual to move about, and this the bicycle achieves in a way that quite outdoes natural evolution.”

- s.s. wilson
A Bike Shelter for Clarendon Hills

Drought-Resistant, Native Prairie Plantings
Landscaped Bioswales
Light-Colored Paving
Permeable Paving
Rainwater Infiltration Zone at Rain Garden
Recycled Concrete Landscape Boulders
Recycled Materials in Concrete Mix
Visual Screen for Railroad Control Box
Recycle Shipping Materials and Packaging
Recycled Content in Steel Structure
Translucent Roof Material
Reclaimed Barn Wood Siding
LED Lighting
Photocell Lighting Controls for Exterior Spaces
Increased Light Levels Activated by Motion Sensors
Occupancy / Vacancy Sensor Controls for Interior Spaces
Photo Voltaic System with Battery Bank
Stainless Steel Bicycle Racks for (2) Bicycles
Galvanized Steel Structure and Gutters
Corrugated Translucent Roof
Storage with Vertical Bicycle Racks
Future Changing Room

Site
A. Drought-Resistant, Native Prairie Plantings
B. Landscaped Bioswales
C. Light-Colored Exposed Aggregate Concrete Paving
D. Stabilized Decomposed Granite Permeable Paving
E. Recycled Concrete Rain Garden
F. Recycled Concrete Landscape Boulders
G. Stainless Steel Expanded Metal Mesh Screen with Plantings

Bicycle Shelter
H. Stainless Steel Bicycle Racks for (2) Bicycles
I. Galvanized Steel Structure and Gutters
J. Corrugated Translucent Roof
K. Reclaimed Barn Wood Siding
L. Storage with Vertical Bicycle Racks
M. Future Changing Room

Sustainable Strategies
A. Drought-Resistant, Native Prairie Plantings
B. Landscaped Bioswales
C. Light-Colored Paving
D. Permeable Paving
E. Rainwater Infiltration Zone of Rain Garden
F. Recycled Concrete Landscape Boulders
G. Recycled in Concrete Mix
H. Visual Screen for Railroad Control Box
I. Recycled in Shipping Materials and Packaging
J. Recycled Content in Steel Structure
K. Reclaimed Barn Wood Siding
L. Photocell Lighting Controls for Exterior Spaces
M. Increased Light Levels Activated by Motion Sensors
N. Occupancy / Vacancy Sensor Controls for Interior Spaces
O. Photo Voltaic System with Battery Bank

The translucent corrugated roof is sloped down to the structural steel beams which are placed on their side and sloped to create a gutter. The rain runs through the corrugations, down to the beams and cascades off the low end and into the rain garden landscaped with recycled concrete boulders and native plants.
A Ride Through the Prairie